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Abstract. The thermodynamic properties of the selenium–tellurium system are analysed in
terms of a novel regular solution model with multiple connectivity. The model is an extension
of the regular solution model that discriminates between two forms of tellurium atom according
to their connectivity (number of first neighbours). In the resulting ternary system, the chemical
equilibrium between these two forms of tellurium is taken into account. The model can be solved
in either the Bragg–Williams or the quasi-chemical approximation. A very good representation
of the thermodynamic properties is obtained. Moreover, the model predicts a temperature and
concentration evolution of the number of first neighbours in the liquid in close agreement with
independent neutron scattering measurements. As a result, this model provides a simple insight
into the mechanisms that are responsible for the complex thermodynamic and structural behaviour
of the Se–Te system.

1. Introduction

The selenium–tellurium system has been extensively studied because of its complex
behaviour regarding structural, thermodynamic and electrical properties. The two elements
display close similarities: they have the same number of valence electrons (their p band
is two-thirds filled with four electrons) and their stable crystalline phases are trigonal
arrangements of helical chains. Their crystal structure derives from a Peierls distortion
of a simple cubic structure, Se being more distorted than Te, as can be seen from the
ratios of their shortest intrachain(rs) to interchain(rl) bonds lengths:rs/rl = 0.67 for Se
and 0.83 for Te. Although rather similar in the solid state, they differ in the liquid state.
Elemental selenium is a semiconductor in both solid and liquid states at normal pressure
and its liquid structure consists mainly of chains. It eventually undergoes a semiconductor-
to-metal transition in the liquid state, in a region that lies in the vicinity of its critical point
(P = 380 bar,T = 1630 ◦C) [1]. Tellurium becomes metallic upon melting [2], with
a coordination number varying between 2.2 and 2.5 at the melting point and 3 at higher
temperatures, according to various x-ray and neutron scattering experiments [3, 4, 5]. The
metallic behaviour of liquid tellurium is now believed to be related to an enhancement
of the interchain interactions as one of the interchain bonds is substantially shortened
upon melting [6]. Liquid tellurium then appears as entangled broken chains, formed by
a mixture of twofold- and threefold-coordinated atoms, whose relative proportions vary
with temperature. In the case of selenium, the distance between the chains is comparatively
larger, and consequently, the melt remains semiconducting over a broad temperature and
pressure range. In molten Se–Te alloys the semiconductor–metal transition takes place at
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around 60–80% Te according to optical measurements (Raman scattering [7], reflectivity
[8]). Neutron scattering experiments [9, 10] and EXAFS measurements [11] agree well
with this scheme.

The structural changes in the melt are reflected in the thermodynamic quantities of
mixing. As expected for such parent elements, the magnitude of the enthalpy and Gibbs
energy of mixing is rather weak (of the order of some kJ mol−1) [12]. More interestingly,
the enthalpy of mixing that is negative at low temperatures becomes positive in the Te-
rich side with increasing temperature. Two different approaches to the thermodynamic
modelling of the system have been followed. On the one hand a series of models
(inhomogeneous structure model) assuming an inhomogeneous structure of the melt have
been developed by Tsuchiya and Seymour [13]: a coexistence of metallic threefold-
coordinated and semiconducting twofold-coordinated microdomains is assumed. This idea
has been applied to explain various thermophysical properties of pure Te and Se–Te melts.
It can be objected that microdomains containing approximately 10 to 30 atoms should give
rise to small-angle features in the neutron scattering experiments, provided that the contrast
between the domains is sufficient. Such features have not been observed to our knowledge.
In [14] the thermodynamic properties of mixing of Se–Te have been derived. On the other
hand, the thermodynamic quantities of mixing have been derived in terms of excess-volume
contributions [15]. This approach assumes an ideal solution model for Se–Te and considers
a series expansion of theP 1V -term to account for the excess term.

The aim of this paper is to analyse the close relationship between the atomic structure—
characterized, in a first approximation, by the coordination number—and the thermodynamic
quantities of mixing, with the help of a simple statistical model: the regular model with
multiple connectivity (RMMC). The present model allows us to recast some of the basic
assumptions of the inhomogeneous structural model in a clear framework and ultimately
uses the thermodynamic properties of the binary system to probe the structure of one of the
constitutive elements.

2. The regular solution model with multiple connectivity

The basic idea underlying this model is to consider that the changes of the thermodynamic
properties of the molten Se–Te alloys are due to the structural changes undergone by
tellurium as the temperature is raised. Such an idea has already been applied by Takedaet
al [16] to analyse the temperature dependence of the structure factor of liquid Te obtained
by neutron scattering. The main assumption is to treat the binary Se–Te system as a ternary
one, by discriminating between two forms of tellurium atoms, according to their number
of first neighbours (connectivity). The interpretation of the neutron or x-ray scattering
experiments leading to the determination of the coordination numbers is not straightforward
and has led to controversy. Even in the computer simulation results, the interpretation of the
connectivity of pure liquid tellurium is not a simple matter. As explained in [6], the structure
of liquid Te results from a significant shortening of one of the interchain bonds upon melting.
The chain structure is preserved and the number of enhanced interchain bonds varies with
temperature. For the purpose of thermodynamic modelling, it is reasonable to assume that
selenium remains twofold coordinated and that tellurium atoms can be either twofold(TeII )

or threefold(TeIII ) coordinated. This assumption is supported by the results of tight-binding
Monte Carlo simulations performed by one of the authors [6]: figure 1 presents a snapshot
of a configuration of liquid tellurium with TeII and TeIII atoms distinguished by their colour.
Beyond the different coordination numbers, it is interesting to notice a tendency towards
phase separation between TeII and TeIII atoms, which has been quantified in [6] by the
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Figure 1. A typical configuration of liquid tellurium obtained by a tight-binding Monte Carlo
simulation. A slab containing approximately 200 atoms has been cut out of the box of 1152
atoms. Atoms whose distance is less than 3.15Å are considered connected. Twofold-coordinated
tellurium atoms are shown in grey, threefold-coordinated atoms are in black. Some atoms may
appear less than twofold or threefold coordinated due to the periodic boundary conditions used.
A tendency towards phase separation between TeII and TeIII species appears and can be quantified
by means of an order parameter. For details, see [6].

calculation of an order parameter. The general framework of our approach is the regular
solution model and the present treatment closely follows that of Guggenheim [17], with two
important differences:

(i) the ‘quasi-lattice’ has no constant connectivity as the connectivity depends on the
nature of the atoms; and

(ii) the model explicitly describes the equilibrium TeII ↔ TeIII in the presence of
selenium.

Table 1 presents the notation used throughout this paper.
Pure tellurium is then considered as a ‘solution’ whose concentration(x) in the TeII

species is

x = N ′
2

N ′
2 + N ′

3

= N ′
2

N2 + N3
= N ′

2

NTe
. (1)

The total number of pairs in the solution is

P = z1N1 + z2N2 + z3N3

2
. (2)

P12 (P13, P23) denotes the number of Se–TeII (Se–TeIII , TeII –TeIII ) pairs. The energies of
such pairs areε12, ε13 andε23 respectively. Under such assumptions, the total configurational
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energy of the Se–Te solution is

8 = P12(ε12 − 1
2ε11 − 1

2ε22) + P13(ε13 − 1
2ε11 − 1

2ε33) + P23(ε23 − 1
2ε22 − 1

2ε33)

+ 1
2z1N1ε11 + 1

2z2N2ε22 + 1
2z3N3ε33 (3)

while that of pure Se is

8Se = 1
2z1N1ε11 (4)

and that of pure Te is

8Te = P ′
23(ε23 − 1

2ε22 − 1
2ε33) + 1

2z2N
′
2ε22 + 1

2z3N
′
3ε33 (5)

whereP ′
23 is the number of TeII –TeIII pairs in pure tellurium.

Table 1. Notation.

Number of atoms Mole
in the pure Number of atoms fraction in

Species elements in the alloy the alloy Connectivity

Se N1 N1 X1 z1 = 2
TeII N ′

2 N2 X2 z2 = 2
TeIII N ′

3 N3 X3 z3 = 3

In a zeroth-order (Bragg–Williams) approximation, corresponding to a random
distribution of the atomic species, the number of pairs of each kind is given by

P ∗
ij = zizjNiNj

z1N1 + z2N2 + z3N3
(6)

and the configurational partition functions of the solution(�) and the pure elements(�Se

and�Te) can be easily calculated:

� = (N1 + N2 + N3)!

N1!N2!N3!
exp−φ(P ∗

12, P
∗
13, P

∗
23)

kT
(7)

�Se = exp−z1N1ε11

2kT
(8)

�Te = (NTe)!

N ′
2!N ′

3!
exp−φ∗

Te(P
∗
23

′)
kT

. (9)

The combinatory term in (7) is obtained by a two-step procedure. We first calculate the
number of ways to build a lattice with(N1 + N2) twofold- andN3 threefold-coordinated
sites. We then count the number of atomic arrangements on such a lattice, allowingN1

Se andN2 TeII atoms to mix randomly on the(N1 + N2) twofold-coordinated sites. The
combinatory term in (7) is the product of these two terms.

The Gibbs energy of mixing can be written quite generally as

1Gm = [X3 − (1 − x)(1 − X1)] 1G0 + d
∑
i 6=j

[
zizjXiXjWij

/(∑
i

ziXi

)]

+ RT

3∑
i=1

Xi ln Xi

− (1 − X1)

[
z2z3x(1 − x)

z2x + z3(1 − x)
W23 + RT {x ln x + (1 − x) ln(1 − x)}

]
(10)
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with Wij = N (εij − 1
2εii − 1

2εjj ), whereN is Avogadro’s number,1G0 = 1H 0 − T 1S0

and1H 0 = N ((z3/2)ε33 − (z2/2)ε22). 1G0 and1S0 are the standard Gibbs energy and
entropy of the transformation reaction TeII → TeIII .

In the particular case wherez1 = z2 = 2 andz3 = 3, 1Gm becomes

1Gm = [X3 − (1 − x)(1 − X1)] 1G0 + 2X1X2

d
W12 + 3X1X3

d
W13

+
[

3X2X3

d
−(1 − X1)

6x(1 − x)

3 − x

]
W23 + RT [X1 ln X1 + X2 ln X2

+ X3 ln X3 − (1 − X1){x ln x + (1 − x) ln(1 − x)}] (11)

whered = X1 + X2 + 3
2X3.

The enthalpy of mixing1Hm derives from1Gm:

1Hm = [X3 − (1 − x)(1 − X1)] 1H 0 + 2X1X2

d
W12 + 3X1X3

d
W13

+
[

3X2X3

d
− (1 − X1)

6x(1 − x)

3 − x

]
W23. (12)

Until now the system has been treated as a regular ternary system—except for the
variable connectivity. The second step is to express the equilibrium between TeII and TeIII

species: the equilibrium equation is obtained by minimizing the Gibbs energy of the solution
Se–Te with respect toX2. Remembering that pure tellurium is treated as a solution, we can
write

Gm = 1Gm + X1G
0
Se+ (1 − X1)G

m
Te (13)

with

Gm
Te = 1Gm

Te + xG0
TeII + (1 − x)G0

TeIII

and

1Gm
Te = 6x(1 − x)

3 − x
W23 + RT {x ln x + (1 − x) ln(1 − x)} .

One obtains

Gm = X1G
0
Se+ X2G

0
TeII + X3G

0
TeIII +

∑
i 6=j

[
zizjXiXjWij

/(∑
i

ziXi

)]

+ RT

3∑
i=1

Xi ln Xi. (14)

The equilibrium condition

∂Gm

∂X2

∣∣∣∣
T ,P

= 0

shows thatX2 andX3 obey a mass action law:

RT ln
X2

X3
= 1G0 − 1

d2
[X1(3 − X1)W12

+ 3
2{(X1 + X2)

2 − 4X1 − 6X2 + 3}W23 − 3X1W13]. (15)

In the pure tellurium ‘solution’(X1 = 0 → X2 = x andX3 = 1 − x), the above equation
becomes

RT ln
x

1 − x
= 1G0 − 6

(
1 − 6

(3 − x)2

)
W23. (16)
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In the high-temperature limit(T → ∞), this equation becomes

x = exp(−1S0/R)

[1 + exp(−1S0/R)]
.

3. Application to the Se–Te system

3.1. Thermodynamic properties at 733 K

A large number of data on the enthalpy and Gibbs energy of mixing are available at 733 K
[18, 19, 20]. Givenn experimental values of1H(X1) and1G(X1) for n values ofX1, we
are faced with a system of 3n + 1 equations (n equations (11), (12) and (15) respectively,
and equation (16)) withn + 6 unknowns, namely:W12, W13, W23, 1H 0, 1G0, x, and n

values ofX2. The numerical resolution of this system proceeds in two steps:

(i) calculatex and then values ofX2 using equations (15) and (16); and
(ii) use an iterative least-squares fitting method to calculate the remaining adjustable

parametersW12, W13, W23, 1H 0, 1G0, taking the equations (11), (12), (15), (16) into
account.

Figure 2. The enthalpy of mixing and Gibbs free energy obtained by the RMMC at 733 K, in
a Bragg–Williams approximation. The experimental data are obtained from the following:�:
[18]; +: [19]; �: [20]; ◦: [20].

The effect of such an adjustment on the experimental data at 733 K is presented in
figure 2. The agreement is very good, in particular on the Te-rich side, where the curvature
of the enthalpy of mixing changes its sign, and where the minimum of1H is observed.
Such a behaviour is rather specific to the Se–Te system, and can hardly be reproduced by
other thermodynamic models. The following set of adjustable parameters has been obtained
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from the least-squares procedure described above:

W12 = −0.871 kJ mol−1 W13 = 3.489 kJ mol−1 W23 = 4.370 kJ mol−1

1H 0 = 7.225 kJ mol−1 1S0 = 10.299 J mol−1 x = 0.316.

The values ofX2 obtained for each value ofX1 are given in table 2. It can be seen that
the addition of selenium favours the creation of TeII species.

Table 2. Values ofX2.

X1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
X2 0.39 0.51 0.52 0.47 0.41 0.34 0.26 0.17 0.08

Figure 3. The number of first neighbours in liquid Se–Te alloys:�: from RMMC simulation
in a Bragg–Williams approximation;�: from neutron scattering experiments [9].

As expected, the magnitude of theWij is rather small. Their sign gives more insight
into the physical behaviour of the Se–Te system. A weakly negative SeTeII interaction is
compatible with the existence of a continuous solid solution in the phase diagram. The
interactions between species with different connectivity (SeTeIII and TeII TeIII ) appear to be
positive, indicating a tendency towards phase separation. Although these parameters are
effective quantities whose physical interpretation requires some care, a positive value for
W23 is in agreement with the results of the computer simulations quoted in [6]: the latter
results show a clear tendency towards phase separation (see figure 1) that can be quantified
by means of an order parameter. Of course, in the Bragg–Williams approximation used here
this order parameter is zero. The model also yields structural information on the liquid.
The value ofx allows us to calculate an average coordination number for tellurium:

ZTe
av = z2x + z3(1 − x) = 3 − x = 2.68 (17)
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Figure 4. The evolution of the enthalpy of mixing withx (the concentration of TeII species
in the pure tellurium ‘solution’). Increasing values ofx correspond to increasing temperatures.
The experimental values of the enthalpy of mixing were directly measured at 733 K (�) and
calculated at 873 K (�) and 1073 K (•) (see the text).

which that is in good agreement with the experimental values.1S0 = 10.299 J mol−1 yields
a limiting high-temperature value ofx = 0.22. This corresponds to a coordination number
Z = 2.78 for pure tellurium—a reasonable value, in view of the experimental uncertainties
in the coordination number. More interestingly, the average coordination number over the
whole concentration range of the Se–Te solution can be calculated from

Zav = z1X1 + z2X2 + z3X3 = 2X1 + 2X2 + 3X3 (18)

and compared to the results of neutron scattering experiments [9], as shown in figure 3. It has
to be recalled that the valuesX1, X2, X3 have been obtained by fitting the thermodynamic
data (the enthalpy and Gibbs energy of mixing). The successful comparison with structural
data that have been measured independently is an indication of the validity of the model
presented here.

3.2. Temperature effects

Another interesting point is to study the temperature dependence of the thermodynamic
properties, remembering that a characteristic feature of the Se–Te system is the change
of the sign of the enthalpy of mixing on the Te-rich side with increasing temperature.
A complete fit of the thermodynamic data at different temperatures is hindered by the
lack of reliable direct measurements of the enthalpy and Gibbs energy of mixing. Simply
changing the temperature and retaining the values ofW12, W13, W23, 1H 0, 1G0 obtained
by fitting at 733 K gives poor results. The temperature dependence ofx, obtained by
means of the equilibrium equation (17), is too weak to account for the changes in the
thermodynamic quantities of mixing. This is partly due to the Bragg–Williams treatment
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of the model that assumes a random distribution of the atomic species, for a system with
a tendency towards ordering at low temperature and phase separation at high temperature.
It is, however, possible to analyse the effect of the temperature indirectly by changing
the value ofx between 0.316 (its value at 733 K) and 0 (a value corresponding to very-
high-temperature tellurium with only TeIII atoms), without changing the other parameters
(W12, W13, W23, 1H 0, 1G0). The enthalpy of mixing calculated for different values ofx

is shown in figure 4. The experimental values have been calculated from the data at 733 K
and specific heat measurements from [21, 22, 23]. Although no quantitative agreement
is obtained, the tendency of the sign of the enthalpy of mixing to change with increasing
temperature is clearly present.

Figure 5. Scc(0) as a function of the concentration of Se(X1) for different values ofx.

The thermodynamic stability of the melt is related to the low-scattering-vector limit
(q → 0) of the partial concentration–concentration structure factorScc(0) defined by Bhatia
and Thornton [24]:

Scc(0) = RT

/(
∂2Gm

∂X2
1

)
T ,P,N

. (19)

This quantity is plotted in figure 5 for different values ofx. As the Gibbs energy depends
directly on the temperature for the entropy term and indirectly for the enthalpy term, the
significant range ofx is narrower than that described above.Scc(0) is always positive
indicating that the solution is always stable, but the hump aroundX1 = 0.2 at 733 K,
corresponding tox = 0.316, indicates a tendency towards phase separation. At higher
temperature the positive value of the enthalpy of mixing is counterbalanced by the entropy
term, so the hump disappears. Consequently, a peculiar behaviour of the low-q structure
factor, if present, should be better observed around the melting temperature and on the
Te-rich side.
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Figure 6. The enthalpy of mixing and Gibbs free energy obtained by RMMC simulation
at 733 K, in a quasi-chemical approximation. The experimental data are obtained from the
following work: �: [18]; +: [19]; �: [20]; ◦: [20].

The above calculations rely on a Bragg–Williams approximation. The ordering or phase
separation effects can be better approximated in a quasi-chemical (QC) treatment. The
resulting equations are given in appendix A. The values of the parameters obtained by
fitting at 733 K differ only weakly from those of the Bragg–Williams treatment and a slight
improvement of the agreement with the experimental data is observed on the tellurium-rich
side of the system, as shown in figure 6. The evolution of the number of first neighbours in
pure tellurium (ZTe

av) with temperature can be calculated from equation (17) with the value
of x obtained by (23). It is plotted in figure 7, together with the experimental values taken
from [25, 26]. Considering the experimental errors in the number of first neighbours, which
are particularly awkward to obtain from neutron scattering data in the case of tellurium, the
agreement is correct. It is observed that the number of first neighbours does not reach 3 in
the temperature range of interest, indicating that a pure TeIII liquid is not obtained.

4. Conclusions

In this paper, the close relationship between thermodynamic and structural data in the
Se–Te system has been emphasized by means of a novel ‘regular solution model with
multiple connectivity’. This model differs from the regular solution model in two ways. The
connectivity of the atoms is explicitly taken into account in the derivation of the statistical
mechanical treatment, and, in the resulting ternary system, the ‘chemical equilibrium’
between two distinguishable forms of the same element is treated. Beyond a very good
representation of the thermodynamic data, the model predicts structural properties of the
melt—basically the number of first neighbours—that are consistent with the experimental
results. Although the description of the melt in terms of twofold- and threefold-coordinated
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Figure 7. The number of first neighbours (ZTe
av) versus temperature, obtained in the quasi-

chemical approximation using equations (17) and (23) (full line) compared with the experimental
results from earlier work:•: [25]; �: [26].

species is rather crude and merits discussion [6], this simplified picture is useful for
developing a statistical mechanical model. This study shows that the thermodynamic
behaviour of the Se–Te system can be interpreted as the result of the competition between:

(i) the structural changes undergone by pure tellurium as the temperature is raised,
characterized by a ‘chemical equilibrium’ between TeII and TeIII ‘species’;

(ii) the displacement of this equilibrium on adding Se;
(iii) (weak) negative interactions (the ordering tendency) between twofold-coordinated

species and (weak) positive interactions between species with different coordination; and
(iv) the effect of the entropy that stabilizes the melt at high temperature.

As the chemical interaction is rather weak (Se and Te are parent elements), the structural
changes undergone by tellurium become predominant and are the origin of the observed
thermodynamic behaviour. The general field of application of this model, or its possible
variations, concerns such systems. In such cases, the thermodynamic data for the binary
system can be used to probe the structure of one of the constitutive elements. The application
of this model to the S–Te system, whose thermodynamic behaviour is also very complex,
would be of great interest. Unfortunately, the available experimental data are too scarce for
such an attempt.

Appendix A

The quasi-chemical treatment of the model follows the same pattern as the Bragg–Williams
one, with somewhat more complicated equations. The results are summarized here. The
free energy and enthalpy of mixing, to be compared with equations (11) and (12), are now
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written as

1Gm = [X3 − (1 − x)(1 − X1)] 1G0 +
∑
i 6=j

1

N
P̄ijWij + RT

( 3∑
i

Xi ln Xi − 1

N
ln

µ̄

µ∗

)
− (1 − X1)

[
1

NTe
P̄ ′

23W23 + RT

(
x ln x + (1 − x) ln(1 − x) − 1

NTe
ln

µ̄′

µ∗′

)]
(A1)

1Hm = [X3 − (1 − x)(1 − X1)] 1H 0 +
∑
i 6=j

1

N
P̄ijWij − (1 − X1)

1

NTe
P̄ ′

23 W23. (A2)

The equilibrium equations corresponding to equations (15) and (16) become

RT ln
X2

X3
= 1G0 −

∑
ij

∂

∂X2

(
1

N
P̄ij

)
T ,P

Wij + RT
∂

∂X2

(
1

N
ln

µ̄

µ∗

)
T ,P

(A3)

RT ln
x

1 − x
= 1G0 − ∂

∂x

(
1

NTe
P̄ ′

23

)
T ,P

W23 + RT
∂

∂x

(
1

NTe
ln

µ̄′

µ∗′

)
T ,P

. (A4)

In the above equations,P ∗
23

′ is the number of TeII –TeIII pairs in pure tellurium in the
BW approximation:

1

NTe
P ∗

23
′ = z2z3x(1 − x)

z2x + z3(1 − x)
(A5)

and P̄ ′
23 is the number of TeII –TeIII pairs in pure tellurium in the QC approximation:

1

NTe
P̄ ′

23 = 2z2z3x(1 − x)

z2x + z3(1 − x) + [
(z2x + z3(1 − x))2 + 4z2z3x(1 − x)(e2W23/RT − 1)

]1/2.

(A6)

P ∗
ij was defined earlier (equation (6)).

P̄ij is the number ofij pairs in the quasi-chemical approximation. The differentP̄ij are
solutions of the following system of equations:

(P̄12)
2

(z1N1 − P̄12 − P̄13)(z2N2 − P̄12 − P̄23)
= exp

(
−2W12

RT

)
(P̄13)

2

(z1N1 − P̄12 − P̄13)(z3N3 − P̄13 − P̄23)
= exp

(
−2W13

RT

)
(P̄23)

2

(z2N2 − P̄12 − P̄23)(z3N3 − P̄13 − P̄23)
= exp

(
−2W23

RT

)
.

(A7)

(R/NTe) ln(µ̄′/µ∗′)is the excess-entropy term resulting from the pair permutations in pure
tellurium:

µ̄′

µ∗′ =
[

1
2(z2N

′
2 + P ∗

23
′)
]
!( 1

2P ∗
23

′)!( 1
2P ∗

23
′)!

[
1
2(z3N

′
3 + P ∗

23
′)
]
![

1
2(z2N

′
2 + P̄ ′

23)
]
!( 1

2P̄ ′
23)!(

1
2P̄ ′

23)!
[

1
2(z3N

′
3 + P̄ ′

23)
]
!

. (A8)

(R/N) ln(µ̄/µ∗) is the excess-entropy term resulting from the pair permutations in the alloy:

µ̄

µ∗ = ( 1
2P ∗

12)!(
1
2P ∗

12)!
[

1
2(z1N1 + P ∗

12 + P ∗
13)

]
!( 1

2P ∗
13)!(

1
2P ∗

13)!

( 1
2P̄12)!( 1

2P̄12)!
[

1
2(z1N1 + P̄12 + P̄13)

]
!( 1

2P̄13)!( 1
2P̄13)!

×
[

1
2(z2N2 + P ∗

12 + P ∗
23)

]
!( 1

2P ∗
23)!(

1
2P ∗

23)!
[

1
2(z3N3 + P ∗

13 + P ∗
23)

]
![

1
2(z2N2 + P̄12 + P̄23)

]
!( 1

2P̄23)!( 1
2P̄23)!

[
1
2(z3N3 + P̄13 + P̄23)

]
!
. (A9)
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